organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hua Fang,^a Mei-Juan Fang,^a Zhi-Ping Zeng,^a Zan-Bin Wei^b and Yu-Fen Zhao^a*

^aDepartment of Chemistry, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and ^bState Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China.

Correspondence e-mail: yfzhao@xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.005 Å R factor = 0.067 wR factor = 0.186 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dimethyl [hydroxy(phenyl)methyl]phosphonate

The title compound, $C_9H_{13}O_4P$, has been obtained by the reaction of dimethyl phosphite and benzaldehyde. In the crystal structure, intermolecular $O-H\cdots O$ hydrogen bonds link the molecules into infinite chains.

Comment

Some α -hydroxyphenymethylphosphonic esters and their derivatives are compounds of significant biological and pharmaceutical interest, for example as inhibitors of inositol monophosphatase (Maier & Diel, 1994). They are useful reagents for the synthesis of enol ethers and α -ketophosphonates (Babak & Rahman, 2001).

Bond lengths and angles in the title compound, (I), are in agreement with the values reported for related compounds (Smaardijk *et al.*, 1985; Aras *et al.*, 2003). The hydroxy unit is involved in a hydrogen-bonding interaction with the phosphoryl O atom of a neighboring molecule (Table 1 and Fig. 2).

Experimental

To a solution of benzaldehyde (5.3 g, 50 mmol) and dimethyl phosphite (5.5 g, 50 mmol) in tetrahydrofuran (30 ml) at 268 K was added ammonia (16 ml, 25% aqueous). The mixture was left to stand at ambient temperature for 3 h, during which time a precipitate separated. The precipitate was filtered off and rapidly washed with cold diethyl ether (Martine *et al.*, 1995). Single crystals were obtained by crystallization from dichloromethane and petroleum ether (1:6 v/v).

 $D_{\rm x} = 1.357 {\rm Mg m}^{-3}$

Cell parameters from 1831

Mo Ka radiation

reflections

 $\theta = 2.3 - 25.6^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$

T = 273 (2) K

Chunk, colorless $0.46 \times 0.20 \times 0.18 \text{ mm}$

Crystal data $C_9H_{13}O_4P$ $M_r = 216.16$ Monoclinic, $P2_1/n$ a = 8.400 (3) Å b = 7.737 (3) Å c = 16.477 (6) Å $\beta = 98.949$ (7)° V = 1057.8 (7) Å³ Z = 4

© 2006 International Union of Crystallography All rights reserved Received 28 February 2006

Accepted 6 March 2006

Figure 1

The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radii.

Figure 2

Packing, showing the O-H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Data collection

Bruker SMART APEX area-	2179 independent reflections
detector diffractometer	1728 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.044$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.5^{\circ}$
(SADABS; Bruker, 2001)	$h = -10 \rightarrow 10$
$T_{\min} = 0.895, T_{\max} = 0.957$	$k = -9 \rightarrow 9$
5687 measured reflections	$l = -12 \rightarrow 20$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1044P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.067$	+ 0.0871P]
$vR(F^2) = 0.186$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2179 reflections	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
27 parameters	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$O4-H4B\cdots O1^{i}$	0.82	1.88	2.689 (3)	168		
Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.						

All H atoms were placed in geometrically idealized positions and

treated as riding on their parent atoms, with C-H = 0.95 (aromatic) or 0.98 (CH and CH₃), O-H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}$ (aromatic C, CH, O) or $1.5U_{eq}$ (methyl C).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ViewerPro (Accelrys, 2001); software used to prepare material for publication: SHELXL97.

The project was supported by the Key (Key grant) Project of the Chinese Ministry of Education (No. 104201) and the Natural Science Foundation of Fujian Province of China (No. C0310002).

References

- Accelrys (2001). ViewerPro. Version 4.2. Accelrys Inc., Burlington, Massachusetts, USA.
- Aras, E., Acar, N. & Birey, M. (2003). Z. Naturforsch. Teil A, 58, 299-302.
- Babak, K. & Rahman, N. (2001). Synth. Commun. 31, 2245-2250.
- Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Maier, L. & Diel, P. J. (1994). Phosphorus Sulfur Silicon, 90, 259-279.
- Martine, D., Hammer, S. & Hanspeter, K. (1995). Synthesis, pp. 1267-1272.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Smaardijk, A. A, Noorda, S., van Bolhuis, F. & Wynberg, H. (1985). Tetrahedron Lett. 26, 493-496.